Self-Adaptive Video Encoder: Comparison of Multiple Adaptation Strategies Made Simple

Martina Maggio*, Alessandro Vittorio Papadopoulos†, Antonio Filieri‡ and Henry Hoffmann§

*Department of Automatic Control, Lund University, Sweden; Email: martina@control.lth.se
†Mälardalen University, Sweden; Email: alessandro.papadopoulos@mdh.se
‡Department of Computing, Imperial College London, United Kingdom; Email: a.filieri@imperial.ac.uk
§Department of Computer Science, University of Chicago, USA; Email: hankhoffmann@cs.uchicago.edu

Abstract—This paper presents an adaptive video encoder that can be used to compare the behavior of different adaptation strategies using multiple actuators to steer the encoder towards a global goal, composed of multiple conflicting objectives. A video camera produces frames that the encoder manipulates with the objective of matching some space requirement to fit a given communication channel. A second objective is to maintain a given similarity index between the manipulated frames and the original ones. To achieve the goal, the software can change three parameters: the quality of the encoding, the noise reduction filter radius and the sharpening filter radius. In most cases the objectives – small encoded size and high quality – conflict, since a larger frame would have a higher similarity index to its original counterpart. This makes the problem difficult from the control perspective and makes the case study appealing to compare different adaptation strategies.

I. INTRODUCTION

Many papers propose adaptation strategies for self-adaptive systems to achieve specific run time objectives. For example, one objective might be to ensure web server response time is below a certain threshold. Another example is minimizing the web server’s energy consumption. The list of objectives can have multiple elements, together forming a global goal that the adaptation strategy should reach. Objectives often conflict with one another. For example, decreasing web server response time will most likely lead to higher resource utilization, therefore increasing the energy consumption.

In principle, all these strategies have limitations – conditions in which they do not function correctly – and guarantees on what they can achieve. The system designer wants to choose the best adaptation strategy for a specific set of objectives and working conditions. However, when the execution scenario becomes complicated the theoretical comparison of the limitations and guarantees of each adaptation strategy is hardly fair and may be difficult to interpret. To select the best alternative, we would like to compare strategies based not only on qualitative metrics, but also on their quantitative counterparts.

Testing how a technique performs in a software system with conflicting objectives is a hard problem and often the adaptation techniques cannot be tested in isolation. They run alongside many other things that do not strictly belong to the adaptation strategy. For example, in the Tele Assistance System (TAS) [16] exemplar, multiple services can provide implementations for the analysis of a patient physical conditions. These services expose specific guarantees on their reliability, response time, and cost. For each patient, the most appropriate service should be invoked. This choice is based on the satisfaction of conflicting objectives – for example, minimizing cost while guaranteeing that the analysis is performed on time to discover anomalies. However, the adaptation strategy is not a component running in isolation, and failures can happen at any other level. For example, other services are running in the same underlying infrastructure, like ambulance management. In this case study – but also in others, like the DEECo framework [1], [10] or Internet-Of-Things-based exemplar [4] – it is therefore difficult to isolate the adaptation strategy and compare the results obtained with different alternatives. Yet, to test different adaptation strategies, we want a case study that highlights some the issues an adaptation strategy would face in a real deployment scenario.

To define such a case study, this paper presents our Self-Adaptive Video Encoder (SAVE). Our encoder simulates the recording and manipulation of a video, using an mp4 stream and processing each of the original frames to obtain a compressed version of the stream. The encoding process’ goal is to reach two conflicting objectives: compress the video so that each frame occupies a specific size and obtain a specific value for a well-known similarity index (SSIM) [15] that compares the original frames with the compressed ones.

To achieve these two conflicting goals, the encoder can change three parameters for each frame: the quality of the encoding, the radius of a sharpen filter applied to the image, and the radius of a noise reduction filter applied to the frame. The quality parameter roughly relates to a compression factor for the image. Its value is between 1 and 100 and represents the percentage of information that is kept in the processed image. However, the relationship between the quality and the size is very difficult to predict, because it depends on the frame content, which is a priori unknown. The sharpen and noise filter process the image. For each pixel, they modify a certain number of pixels that are within a specified radius with respect to the original one. This processing can, for example, remove artifacts that appear due to the compression of the original frame. However, the effect of these filters is not obvious until processing takes place,
making it very difficult to develop a good adaptation strategy.

This case study is an extension of the video encoder used to
generate some of the results in [6]. The encoder shown in the
paper could only modify the quality parameter to obtain a
specific similarity index. As a control problem, this was clearly
easier than the one presented by this artifact. There was no
inter-dependency of multiple parameters on the final results
and the presence of one single goal simplified the overall
solution. Because of these additional difficulties, we believe
that this case study has the potential to unveil many of the
complications and the research challenges that still have to be
solved in building a proper adaptation strategy for software
systems.

With our encoder, we also present a random strategy, a
bangbang controller, and a Model Predictive Control (mpc)
alternative, that can be used as a baseline comparison to see
how existing adaptation alternatives may behave.

II. THE ENCODER

The developed video encoder is a python prototype\(^1\). To
use it, it is not necessary to have a camera connected to the
system – any mp4 stream can be used as the data source.
The video encoder unpacks a list of mp4 streams that the user
places in an input folder and extracts a frame for each of the
original frames in the streams. The encoder uses the function
convert\(^2\) to manipulate the frames.

We emulate the type of manipulations that happen in a real
camera system; e.g., to simulate an adaptive video surveillance
camera. In this hypothetical scenario, we assume that the video
produced by the camera has to be sent on a network, and
that the network hosts many different cameras. The network
bandwidth becomes a precious and potentially scarce resource,
therefore the video encoder should achieve predictability in the
amount of information streamed for every frame.

This motivates the choice of our first goal. The size of
each processed frame is measured by the video encoder after
the encoding process terminates. SAVE should achieve a pre-
deefined size for each frame, specified at command line as a
parameter upon execution. Clearly, we also want to convey the
information that was encoded in the original frame. To assess
if this is the case, we compute a structural similarity index, the
SSIM [15], for each frame. While some adaptation schemes
might maximize the similarity index given a determined size,
we test the adaptation strategy in the presence of conflicting
requirements. To do so, we include a setpoint also for the
SSIM, that can be selected at the command line. More
precisely:

- \(g_1 \), the SSIM that quantifies the similarity between the
 original and compressed frames. SSIM is a unitless met-
 rlic that ranges from 0 to 1, with near 1 indicating similar
 images. \(g_{m,1} \) represents the SSIM measured value.
- \(g_2 \), the frame size (in kilobytes), \(g_{m,2} \) represents the
 measured value of the frame size.

Clearly, these two goals conflict with one another. When a
specific frame size is set, this will correspond to a specific
value for the SSIM on the frame. Similarly, if a specific SSIM
is reached, the corresponding frame will have a prescribed size.

We conduct tests to show how the controller trades one goal
for the other to achieve the optimal value for the cost function.

Our control systems can change the following parameters:

- \(a_1 \), the same quality parameter used in [6] to specify
 the compression density. It ranges between \(a_{1,\text{min}} = 1 \)
 and \(a_{1,\text{max}} = 100 \), where 100 preserves all frame details
 and 1 produces the highest compression.
- \(a_2 \), the sharpen parameter, which specifies the size of
 a sharpening filter to be applied to the image. The size
 ranges between \(a_{2,\text{min}} = 0 \) and \(a_{5,\text{max}} = 5 \) where 0
 indicates no sharpening.
- \(a_3 \), noise, which specifies the size of a noise reduction
 filter, which varies between \(a_{3,\text{min}} = 0 \) and \(a_{3,\text{max}} = 5 \).

The software is extremely modular with respect to the
adaptation strategy. In a folder ctls all the code for the
controllers is included. The software contains three different
pre-specified controllers:

- random: is an adaptation strategy that selects a random
 value for the actuators. Clearly, this would be used only
 as a comparison and is not intended to be by any means
 a good solution for such a complex problem.
- bangbang: is a solution that implements a Bang-Bang
 controller [9]. The controller bounces between the min-
 imum and maximum value for the actuators, depending
 on the sign of the error for both objectives. In this case,
 the size objective – the primary one – is tackled with
 the quality actuator, while the other two are used to
 handle the SSIM objective.
- mpc: is a model predictive controller, synthesized using
 the same principles of [2]. The controller tries to mini-
 mize a cost function containing terms that factor in the
distance from each of the objectives and the use of the
 actuation strategy. It is possible to express preferences
 over both (1) which actuators should be used and (2)
 which objective should be reached in case of unfeasible
 situations. Moreover, the mpc uses a Kalman filter [8] to
 keep an estimate of the current state updated. Section II-B
 introduces the parameters used for the mpc controller.

The main idea behind the case study, however, is to have
a very modular adaptation layer, where a controller is easy to
implement and replace. The choice of introducing a random
controller is motivated by having a very simple piece of code
that shows how to actuate on the system. At the same time, the
bangbang controller is the simplest controller that we could
envision using knowledge about the current progress. These
two examples are mostly introduced to show to a user how
to develop a new control strategy and to ease the learning
phase for the software usage. The mpc controller, on the
contrary, exemplifies a more complex adaptation strategy. It
uses a library that we developed – included in the libs folder
– that determines the general behavior of a model predictive

\(^1\)The code is available at https://github.com/martinamaggio/save and it was
tested on Linux.

\(^2\)https://www.imagemagick.org/script/convert.php
controller. At the same time, the controller is initialized with models obtained with experiments on one specific video – the Obama Victory Speech video\(^3\), with a resolution of \(854 \times 480\). Once the controller is initialized with the model of the software behavior, the controller operation is standard [5].

The code automatically generates some figures in the format shown by Figure 1 and Figure 2 using \LaTeX{} and \LaTeX{}. Images are found in the result folder.

A. Developing a new adaptation strategy

To introduce a new adaptation strategy, a user simply needs to add a new python file in ctls, with the code for the adaptation strategy. It is necessary to modify the file encoder.py in three points:

- in the import area, import the new controller, for example the line import ctls.mpc as mpccontroller is the import for the mpc controller;
- initialize the object controller, that corresponds to the adaptation strategy just developed (lines 93 and 94 are the initialization for the random controller – stating elif mode == "random": controller = randomcontroller.RandomController());
- call the adaptation function specified by the newly developed controller with the needed arguments (lines 129 and 130 include the call for the bangbang controller – elif mode == "bangbang": ctl = controller.compute_u(current_outputs, setpoints)).

The name of the strategy, determined by the mode variable is the same name that one uses as command line parameter to invoke that precise strategy. Extensible code was one of the criteria that we had in mind while developing the case study, and it is one of the valuable characteristics of this case study.

B. Parameters for the Model Predictive Controller

Here we introduce the parameters used for the model predictive controller. The matrices of the system have been identified using a standard identification procedure [11]. The prediction horizon used for the controller is standard [5]. As can be seen, all the actuators vary in the determined domain in a random fashion. As a response to that, the size and the SSIM change. However, it is possible to see that the similarity index value is quite noisy but around 0.86 (the average value, when outliers are eliminated). This testifies that there is a complex relationship between the actuator values that are set by the random controller and the behavior of the controller variables. For this reason, it is quite difficult to achieve a proper and smooth control of the involved quantities.

We have conducted some tests with the bangbang controller for the same frames. The controller is configured such that a minimum value for the quality parameter is selected (20) in case the size is above the desired one, and the maximum value (100) is selected in the opposite case. On the contrary, the sharpen and noise values are set to the maximum value (5) when the measured SSIM is below the setpoint and to the minimum value (0) in the opposite case. As can be seen in Figure 2, the controller has difficulty achieving both the objectives that correspond to the goal. In

\(^3\)https://www.youtube.com/watch?v=nv9NwKAjmt0

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Results for the video experiment with the Obama Victory Speech video, with the random controller.}
\end{figure}
the first frames, the quality varies tremendously between the maximum value and the minimum one, as a result in the size change. When the size stabilizes, the controller finds an equilibrium point which is, however, non-optimal.

For the mpc solution, we run the video compression example using the Obama Victory Speech video, with different combinations of goals g_1 and g_2. Specifically, we run all possible combinations where $g_1 \in \{0.7, 0.8, 0.9\}$ and $g_2 \in \{8000, 10000, 15000\}$. Notice that this is a stress test. In fact, even setting the values of quality, sharpen and noise that would achieve the lowest possible SSIM, this value hardly ever becomes lower than 0.75, therefore the 0.7 setpoint is not feasible. Also, the goals’ conflicting nature makes it impossible to reach most goal combinations simultaneously. For example, when $g_1 = 0.9$, the frame size often exceeds 15000.

Figure 3 shows the nine different experiments with the different values of g_1 and g_2. In these experiments, there are only two feasible values for the setpoints: (1) $g_1 = 0.8$ and $g_2 = 8000$ (Figure 3b) and (2) $g_1 = 0.9$ and $g_2 = 15000$ (Figure 3i). In all others it is impossible to achieve both the SSIM and frame size setpoints. Therefore, as shown in the figures, the controller opts to reach g_2, which has an higher relevance: $w_2 \times g_2$. In the first row, Figure 3a shows that g_2 and gm_2 are basically equal, while the achieved SSIM gm_1 is higher than desired. The encoding quality a_1 is kept low and there is no active noise compensation, while the sharpen value a_2 varies during the execution. Figure 3b shows that both the SSIM and the size setpoint are achieved using some sharpening, a small amount of noise reduction, and a quality similar to that used for the previous combination of setpoints. When the SSIM goal is increased – so, information loss should be diminished – even more noise correction and sharpening is added, as shown in Figure 3c. The setpoint g_1 is reached for some frames, but overall the size limit (and the fact it is weighted more heavily in the cost function) leads to SSIM below the setpoint.

Figures 3d, 3e and 3f show that by allowing a higher frame size the quality is increased, however the frame size does not allow for a precise control of the SSIM g_1, which is not exceeded when its setpoint is equal to 0.7 and optimized as much as possible when it is 0.8 and 0.9. Similar to Figure 3c, the noise reduction is used by the controller in the experiment corresponding to Figure 3f to achieve a better similarity index without increasing the frame size.

Figures 3g, 3h and 3i show that it is possible to achieve $g_1 = 0.9$ and $g_2 = 15000$ by selecting the values of a_1, a_2 and a_3 and the controller therefore selects appropriate values to achieve both the setpoints. In the opposite case, as seen in Figures 3g and 3h, the size setpoint is achieved, while the similarity index is kept as close as possible.

IV. DISCUSSION

We have done a quite extensive set of tests with the proposed case study, trying to identify a suitable linear Multiple-Input Multiple-Output (MIMO) model that could represent the behavior of the software when quality, sharpen and noise are changed. More precisely, we tried to find a linear model that could describe the variation of the size and the SSIM given the variation of our actuation quantities. In this process we have discovered that there is no good linear approximation of the model that would work with many different videos and in all the different phases that the videos expose (for example, a video that records a conference talk is mostly static, while a video of a sport event is very dynamic with frequent changes of scene). This introduces a non-negligible difficulty for adaptation strategies based on control theory and because of that difficulty we consider this an interesting case study for control-theoretical adaptation [3], [7], [14].

Another difficulty in this case study is the interference between the actuators’ values and the goals. All three actuators influence both the goals, in conflicting ways, so that it is often impossible – even testing all the possible configurations – to meet all the objectives at the same time. This interference is a problem regardless of the adaptation strategy and this case study has the potential of fostering research on how to recognize and exploit the inherent trade-offs present in real case studies with complex interactions between goals and actuators.

Another reason why developing an adaptation strategy for this specific case study is challenging is that a new video will require adjustments. These adjustments should be automatic at least to the extent this is possible – if one thinks of a
Fig. 3: Results for the video experiment with the Obama Victory Speech video, with the mpc controller, various setpoints for both the size and the SSIM.
scenario in which the video is a stream of a surveillance camera, there is no way to optimize for uncertain situations. There is always a probability that the scene will be different (partially or completely). In a recorded video, this can happen because the scene has changed, for example from the speaker or the athlete to the public. In a live stream because some people have entered the camera range. The uncertainty in the domain of video encoding makes this case study very interesting for all the research that deals with uncertainty reduction and uncertainty management at runtime.

However, one must also note that not all the challenges in developing adaptation strategies are now covered by this case study. For example, actuation latency [12], [13] is not a concern for this case study. One could extend the current work to include for example network latency in the control signal actuation, as if the computation was done remotely and a specific quality was requested by a streamer.

We also believe that there are many other extensions where SAVE becomes one of the components in a more complex system. This more complex system could, for example, stream the video at a certain rate that depends on the client that is requesting the video. Per-video optimization can be envisioned in the case of a streaming-on-demand service, where videos are retrieved from a common source.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented SAVE, a self-adaptive video encoder that realizes a case study for the development and comparison of adaptation strategies. The code for SAVE can be found at https://github.com/martinamaggio/save We have developed SAVE with extensibility in mind and we have equipped it with simple strategies that demonstrate how to write an adaptation strategy without having to read – or even understand – the encoder. We have highlighted why we believe that SAVE is an excellent case study to compare the behavior of different adaptation strategies and what we believe are the challenges there.

In the future, we would like to implement other existing strategies in the code base and to create some test cases that would run all the adaptation strategies and obtain comparison numbers like the integral of the absolute error with respect to the two objectives specified and other comparison metrics.

Acknowledgements: This work was partially supported by the Swedish Research Council (VR) for the projects “Cloud Control” and “Power and temperature control for large-scale computing infrastructures”, through the LCCC Linnaeus and ELLIIT Excellence Centers. It was also partially supported by the Swedish Foundation for Strategic Research under the project “Future factories in the cloud (FiC)” with grant number GMT14-0032. Henry Hoffmann’s work on this project was partially funded by the U.S. Government under the DARPA BRASS program, by the Dept. of Energy under DOE DE-AC02-06CH11357, by the NSF under CCF 1439156, and by a DOE Early Career Award.

REFERENCES